Novel Applications of EUS

Larissa Fujii-Lau, MD
Assistant Professor of Medicine
University of Hawaii

1/21/2017
Clinical Updates in Gastroenterology, Hepatology, and Nutrition
Objectives

• Overview the benefits of EUS
• Review EUS-guided injection procedures
 ▫ Fiducial placement
 ▫ Celiac plexus neurolysis
 ▫ Tumor ablation
 ▫ Angiotherapy
• Discuss EUS-guided drainage procedures
 ▫ Fluid collection management
 ▫ Necrosis therapy
 ▫ Biliary access
Theoretical Benefits of EUS

- Less invasive than surgery
- Close proximity of the echoendoscope to the target lesion
- Ability to detect intervening vessels using Doppler imaging
- Use of continuous real-time imaging and enhanced image resolution
General Principles

• Technically challenging procedures
 ▫ Expertise in all interventional procedures (EUS, ERCP, stenting)
• Pts who are not candidates for other Tx
 ▫ Endoscopic, IR, surgical
• Any coagulopathy needs to be corrected
• Antibiotic prophylaxis
EUS-guided Injection
Fiducial Placement
Indication

- Radiation therapy has an impt role in Tx of locally advanced pancreatic cancer
 - Major challenge is respiratory organ motion
 - Fiducidal markers can used for localization
- Stereotactic body radiotherapy (SBRT)
 - Allows escalation of radiation doses targeted to tumors and minimizing exposure to normal tissue
Technique

- Preloaded delivery device or load into a 22G FNA needle
- Fiducial: radiopaque cylindrical gold seed
 - 10 mm long, 0.28 or 0.35 mm in diameter
 - 1-2 markers placed within the lesion or within 1 cm of a small target lesion
Clinical Outcomes

• EUS placement reported in:
 ▫ Mediastinal tumors
 ▫ Prostate cancer
 ▫ All GI tumors

• Most evidence for pancreatic cancer
 ▫ Technical success in >90%
 ▫ Failures
 • Unable to access tumor: post-surgical anatomy, gastric outlet obstruction
 • Unable to perform safe FNI: intervening vessels
Table 1 Efficacy and safety of endoscopic ultrasound-guided fiducial placement.

<table>
<thead>
<tr>
<th>Study</th>
<th>Patients (#)</th>
<th>Cancer (type)</th>
<th>Efficacy (%)</th>
<th>Adverse events (# of patients)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pishvaian AC et al. [3]</td>
<td>13</td>
<td>Mediastinal and abdominal malignancies</td>
<td>84.6</td>
<td>Infectious complication (1)</td>
</tr>
<tr>
<td>Varadarajulu Set al. [31]</td>
<td>9</td>
<td>Pancreatic cancer</td>
<td>100</td>
<td>None</td>
</tr>
<tr>
<td>Ammar T et al. [27]</td>
<td>13</td>
<td>Abdominal malignancies</td>
<td>100</td>
<td>None</td>
</tr>
<tr>
<td>Park WG et al. [30]</td>
<td>57</td>
<td>Pancreatic cancer</td>
<td>94</td>
<td>Needle malfunction (1), and minor bleeding (1)</td>
</tr>
<tr>
<td>Sanders MK et al. [29]</td>
<td>51</td>
<td>Pancreatic cancer</td>
<td>90</td>
<td>Mild pancreatitis (1)</td>
</tr>
<tr>
<td>DiMaio CJ et al. [5]</td>
<td>30</td>
<td>Gastrointestinal malignancies</td>
<td>97</td>
<td>Infectious complication (1)</td>
</tr>
<tr>
<td>Choi JH et al. [2]</td>
<td>32</td>
<td>Pancreatic and hepatic malignancy</td>
<td>100</td>
<td>Mild pancreatitis (1)</td>
</tr>
<tr>
<td>Majumder S et al. [21]</td>
<td>77</td>
<td>Pancreatic cancer</td>
<td>90</td>
<td>Abdominal pain (3), vomiting (1), mild pancreatitis (1)</td>
</tr>
<tr>
<td>Davila Fajardo R et al. [32]</td>
<td>23</td>
<td>Pancreatic cancer</td>
<td>100</td>
<td>Minor bleeding (1)</td>
</tr>
</tbody>
</table>

Chavalithdhamrong Disaya et al. EUS-guided placement of fiducials... Endosc Int Open 2015; 03: E373–E377
Celiac Plexus/Ganglia Neurolysis
Indications

• Definitions
 ▫ Plexus vs ganglia
 ▫ Neurolysis vs block

• Pain from intraabdominal malignancy
 ▫ Refractory
 ▫ Side effects from opioid medications
 ▫ ?use for prophylactic pain control in patients with metastatic or T4 disease
Technique

- Localize celiac artery takeoff from aorta
- Locate any visible ganglia
Technique

- Localize celiac artery takeoff from aorta
- Locate any visible ganglia
 - Higher response rate (73.5% vs 45.5% in RCT)
- Bilateral injection
 - 10 mL of 0.25% bupivacaine + 10 mL 98% alcohol
 - Several mL into each identified ganglia, the remainder around the plexus
- May have immediate pain response
Clinical Outcomes

• Improves pain relief in 70% of PCA pts
 ▫ Decrease in overall pain rating (no complete relief)
 ▫ Decrease in opioid consumption
• Temporary (3-6 months)
 ▫ May be sufficient for specific populations
 ▫ Benefit of repeat injections is unclear
• No survival or quality of life benefit

Fabbri C. WJG. 2014;20:8424
Complications

• Minor complications (typically transient)
 ▫ Orthostasis (IV hydration required)
 ▫ Diarrhea

• Major complications (1-2%)
 ▫ Lower extremity weakness/paralysis (2 cases)
 ▫ Retroperitoneal abscess
 ▫ Chronic gastroparesis
 ▫ Gastric/aortic necrosis

Fujii LL. Endosc. 2012;44:E265
Tumor Ablation
Ethanol ablation of pancreatic cysts

- **Technique:**
 - Puncture cyst with 22G FNA needle
 - Partial or total evacuation of cystic fluid
 - Inject a volume of ethanol equal to that aspirated
 - Maintain for 3-5 minutes
 - Reaspirate injected ethanol

EUS-guided local ablative procedures for pancreatic cystic neoplasms are not recommended outside experimental protocols.
Ethanol ablation of solid neoplasms

- Patients unsuitable for surgery
- Concentration ranges from 40-99% ethanol
- Total of 13 patients with insulinoma
 - Volume determined by hyperechoic blush within the tumor
 - Ranged from 0.3-8 mL
 - Resolution of symptoms and euglycemia in all
 - AE: mild pancreatitis, duodenal wall ulcer
- 2 patients with MEN1
 - Normalization of VIP and chromogranin A
 - AE: pancreatic necrosis
- More data is needed

Anti-tumoral agents

- Unresectable pancreatic cancer
- Different agents in pilot studies
 - Chemotherapy: gemcitabine
 - Cytoimplant
 - Dendritic cells
 - TNFerade
 - ONYX-015
 - Brachytherapy with I125 radiation seeds

Table 11: Endoscopic ultrasound-guided tumor ablation

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Design</th>
<th>Indications</th>
<th>Techniques</th>
<th>Type</th>
<th>Tumor response</th>
<th>Complications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chang et al[206]</td>
<td>PS</td>
<td>Pancreatic cancer (n = 1)</td>
<td>Injection</td>
<td>Cytosmear</td>
<td>2 partial; 1 minor</td>
<td>None</td>
</tr>
<tr>
<td>Hecht et al[207]</td>
<td>PS</td>
<td>Pancreatic cancer (n = 21)</td>
<td>Injection</td>
<td>ONYX-015 and gemcitabine</td>
<td>2 partial; 2 minor; 6 stable; 11 progression surgical resection</td>
<td>2 sepsis; 2 duodenal perforations</td>
</tr>
<tr>
<td>Zhang et al[208]</td>
<td>RS</td>
<td>Pancreatic cancer (n = 1)</td>
<td>Injection</td>
<td>TNFerade and chemoradiotoc</td>
<td>1 complete; 5 partial; 4 minor; 12 stable</td>
<td>6 GI bleeding; 6 deep vein thrombosis; 2 pulmonary embolism; 2 pancreatitis; 6 cholangitis</td>
</tr>
<tr>
<td>Iwasa et al[209]</td>
<td>PS</td>
<td>Pancreatic cancer (n = 7)</td>
<td>Injection</td>
<td>Immature dendritic cells</td>
<td>2 mixed; 2 stable; 3 progressive</td>
<td>None</td>
</tr>
<tr>
<td>Hara et al[210]</td>
<td>PS</td>
<td>Pancreatic cancer (n = 9)</td>
<td>Injection</td>
<td>EUS-guided</td>
<td>2 surgically resectable; 3 partial; 3 progressive</td>
<td>None</td>
</tr>
<tr>
<td>Chang et al[211]</td>
<td>PS</td>
<td>Esophageal cancer (n = 24)</td>
<td>Injection</td>
<td>BC-819 and chemoradiotoc</td>
<td>6 complete; 2 stable; 5 thromboembolic events (highest dose)</td>
<td>None</td>
</tr>
<tr>
<td>Arredondo[212]</td>
<td>PS</td>
<td>Pancreatic cancer (n = 22)</td>
<td>Cryoablation</td>
<td>EUS-CTP</td>
<td>6 partial response (only 6 patients analyzed)</td>
<td>3 hyperamylasemia</td>
</tr>
<tr>
<td>Maier et al[213]</td>
<td>PS</td>
<td>Head/neck cancer (n = 21)</td>
<td>Brachy</td>
<td>Ir-192 needles</td>
<td>4 null; 13 partial; 5 none</td>
<td>None</td>
</tr>
<tr>
<td>Lah et al[214]</td>
<td>RS</td>
<td>Metastatic celiac lymph nodes (n = 1)</td>
<td>Brachy</td>
<td>I-125 seeds</td>
<td>Response;</td>
<td>None</td>
</tr>
<tr>
<td>Martinez-Monge et al[215]</td>
<td>RS</td>
<td>Metastatic mesocolic lymph node (n = 1)</td>
<td>Brachy</td>
<td>I-125 seeds</td>
<td>Response;</td>
<td>None</td>
</tr>
<tr>
<td>Sun et al[216]</td>
<td>PS</td>
<td>Pancreatic cancer (n = 15)</td>
<td>Brachy</td>
<td>I-125 seeds</td>
<td>4 partial; 3 minor; 5 stable; 3 progressive</td>
<td>1 site infection; 3 hematologic side effects</td>
</tr>
<tr>
<td>Jin et al[217]</td>
<td>PS</td>
<td>Pancreatic cancer (n = 22)</td>
<td>Brachy</td>
<td>I-125 seeds</td>
<td>4 partial; 3 minor; 5 stable; 3 progressive</td>
<td>1 seed migration</td>
</tr>
</tbody>
</table>

RCT: Randomized controlled trial; PS: Prospective study; RS: Retrospective study; NR: Not reported; CTP: Cryoablation probe; GI: Gastrointestinal.

Angiotherapy
Indications

• Not candidates for endoscopic, surgical, IR therapy
• Varices
 ▫ Gastric > esophageal, duodenal, choledochal
• Nonvariceal GI bleeding
 ▫ GI tumors/polyps
 ▫ Dieulafoy lesions (identification and therapy)
 ▫ Refractory ulcers
Materials

- Coils +/- cyanoacrylate (glue)
 - Risk of glue embolization
 - Coils anchor the glue to the site of injection
 - MC experience: use glue after coil injection only with large (>8 mm) varices

Clinical Outcomes

- Limited to case series
- Variceal experience (n=152)
 - Gastric varices
 - Coil + cyanoacrylate injection
 - 93% obliteration of gastric varices on f/u EUS
 - 3% (3 patients) had rebleeding after obliteration
 - AE: 4 mild pain, 1 pulmonary embolism + PNA (1 week)
- Nonvariceal experience (n=17)
 - GIST, AVMs, Dieulafoy lesions, cancer, pancreatic pseudoaneurysms
 - Cyanoacrylate, hyaluornate, alcohol, epinephrine injection
 - 88% resolution of bleeding
 - No complications

Bhat YM. GIE. 2016;83:1173.
Law R. CGH. 2015;13:808
EUS-guided Drainage Procedures
Cyst Enterostomy
Atlanta Classification of pancreatic collections

<table>
<thead>
<tr>
<th></th>
<th>Interstitial pancreatitis</th>
<th>Necrotizing pancreatitis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute (≤4 wks)</td>
<td>Acute peripancreatic fluid collection (APFC)</td>
<td>Acute necrotizing pancreatitis</td>
</tr>
<tr>
<td></td>
<td>- homogeneous</td>
<td>- heterogeneous</td>
</tr>
<tr>
<td></td>
<td>- pure liquid</td>
<td>- liquid + necrosis</td>
</tr>
<tr>
<td></td>
<td>- usually resolves</td>
<td>- usually resolves</td>
</tr>
<tr>
<td>Chronic (>4 wks)</td>
<td>Pancreatic pseudocyst (PPC)</td>
<td>Walled off pancreatic necrosis (WOPN)</td>
</tr>
<tr>
<td></td>
<td>- pure liquid</td>
<td>- heterogeneous</td>
</tr>
<tr>
<td></td>
<td>- defined wall</td>
<td>- liquid + necrosis</td>
</tr>
</tbody>
</table>

Indications

• Symptomatic pseudocysts
 ▫ Luminal or biliary extrinsic compression
 ▫ Unexplained severe abdominal pain
• Infected cysts

• Prerequisites for EUS-guided drainage
 ▫ A well-defined mature wall is required
 • At least 6 weeks for pseudocysts
 ▫ Within 1 cm from gastric/duodenal wall
 ▫ Lack of duct disruption (ERCP preferable as first step)
Technique

- Find the ideal location for needle puncture
 - Intervening vessels, scope position
Technique

- Find the ideal location for needle puncture
 - Intervening vessels, scope position
- Advance needle into fluid collection
Technique

- Find the ideal location for needle puncture
 - Intervening vessels, scope position
- Advance needle into fluid collection
- Thread a guidewire into the collection under fluoroscopic guidance
Technique

- Find the ideal location for needle puncture
 - Intervening vessels, scope position
- Advance needle into fluid collection
- Thread a guidewire into the collection under fluoroscopic guidance
- Dilate the tract (dilating catheters, balloons)
Technique

- Find the ideal location for needle puncture
 - Intervening vessels, scope position
- Advance needle into fluid collection
- Thread a guidewire into the collection under fluoroscopic guidance
- Dilate the tract (dilating catheters, balloons)
- Insert stent
Stents

- **Plastic stents**
 - Typically multiple double pigtail

- **Metal stents**
 - Self expanding metal stents (SEMS)
 - Biliary or enteral stents used
 - Lumen apposing metal stents (LAMS)
 - Shorter procedure time
 - May improve clinical success (larger fistula size)
Clinical outcomes

- **EUS vs surgical cyst gastrostomy**
 - Shorter mean LOS (2 vs 6 days)
 - Lower overall cost ($7,011 vs $15,052)
 - No difference in clinical outcomes
 - Treatment success (>95%)
 - Complications
 - Reintervention

- **Success rates**
 - Pseudocyst (>90%) > abscess (80-90%) > WOPN (73-92%)

Varadarajulu S. Gastroenterol. 2013;145:583
<table>
<thead>
<tr>
<th>Ref.</th>
<th>Design</th>
<th>Cases</th>
<th>Technical success</th>
<th>Clinical success</th>
<th>Recurrence</th>
<th>Complications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Birolino et al.</td>
<td>RS</td>
<td>27</td>
<td>93%</td>
<td>78%</td>
<td>22%</td>
<td>52%</td>
</tr>
<tr>
<td>Pfaffenhoeck et al.</td>
<td>PS</td>
<td>11</td>
<td>93%</td>
<td>82%</td>
<td>18%</td>
<td>None</td>
</tr>
<tr>
<td>Giovannini et al.</td>
<td>RS</td>
<td>35</td>
<td>100%</td>
<td>89%</td>
<td>9%</td>
<td>3%</td>
</tr>
<tr>
<td>Norton et al.</td>
<td>RS</td>
<td>14</td>
<td>93%</td>
<td>93%</td>
<td>7%</td>
<td>14%</td>
</tr>
<tr>
<td>Vassilakos et al.</td>
<td>RS</td>
<td>14</td>
<td>100%</td>
<td>93%</td>
<td>0%</td>
<td>None</td>
</tr>
<tr>
<td>Enya et al.</td>
<td>RS</td>
<td>13</td>
<td>100%</td>
<td>85%</td>
<td>0%</td>
<td>None</td>
</tr>
<tr>
<td>Hakey et al.</td>
<td>RS</td>
<td>32</td>
<td>96%</td>
<td>93%</td>
<td>12%</td>
<td>11%</td>
</tr>
<tr>
<td>Krüger et al.</td>
<td>PS</td>
<td>35</td>
<td>94%</td>
<td>88%</td>
<td>12%</td>
<td>33%</td>
</tr>
<tr>
<td>Azzar et al.</td>
<td>PS</td>
<td>23</td>
<td>93%</td>
<td>82%</td>
<td>18%</td>
<td>4%</td>
</tr>
<tr>
<td>Antillon et al.</td>
<td>RS</td>
<td>33</td>
<td>94%</td>
<td>87%</td>
<td>4%</td>
<td>15%</td>
</tr>
<tr>
<td>Khaled et al.</td>
<td>RS</td>
<td>46</td>
<td>100%</td>
<td>93%</td>
<td>0%</td>
<td>None</td>
</tr>
<tr>
<td>Ablawi et al.</td>
<td>PS</td>
<td>11</td>
<td>100%</td>
<td>82%</td>
<td>18%</td>
<td>18%</td>
</tr>
<tr>
<td>Arvanitakis et al.</td>
<td>RCT</td>
<td>46</td>
<td>100%</td>
<td>94%</td>
<td>11%</td>
<td>22%</td>
</tr>
<tr>
<td>Lopes et al.</td>
<td>RS</td>
<td>51</td>
<td>94%</td>
<td>84%</td>
<td>17%</td>
<td>23%</td>
</tr>
<tr>
<td>Vanadananjalu et al.</td>
<td>RS</td>
<td>23</td>
<td>100%</td>
<td>95%</td>
<td>0%</td>
<td>None</td>
</tr>
<tr>
<td>Lopes et al.</td>
<td>PS</td>
<td>31</td>
<td>100%</td>
<td>94%</td>
<td>19%</td>
<td>26%</td>
</tr>
<tr>
<td>Arndt et al.</td>
<td>PS</td>
<td>77</td>
<td>94%</td>
<td>91%</td>
<td>11%</td>
<td>6%</td>
</tr>
<tr>
<td>Vanadananjalu et al.</td>
<td>RS</td>
<td>20</td>
<td>100%</td>
<td>95%</td>
<td>NR</td>
<td>None</td>
</tr>
<tr>
<td>Vanadananjalu et al.</td>
<td>RCT</td>
<td>24</td>
<td>100%</td>
<td>96%</td>
<td>NR</td>
<td>4%</td>
</tr>
<tr>
<td>Vanadananjalu et al.</td>
<td>PS</td>
<td>60</td>
<td>90%</td>
<td>93%</td>
<td>4%</td>
<td>2%</td>
</tr>
<tr>
<td>Barthet et al.</td>
<td>PS</td>
<td>28</td>
<td>100%</td>
<td>89%</td>
<td>NR</td>
<td>23%</td>
</tr>
<tr>
<td>Talejsa et al.</td>
<td>RS</td>
<td>18</td>
<td>100%</td>
<td>95%</td>
<td>0%</td>
<td>44%</td>
</tr>
<tr>
<td>Park et al.</td>
<td>RCT</td>
<td>39</td>
<td>95%</td>
<td>95%</td>
<td>6%</td>
<td>7%</td>
</tr>
<tr>
<td>Yanada et al.</td>
<td>RS</td>
<td>26</td>
<td>92%</td>
<td>87%</td>
<td>17%</td>
<td>None</td>
</tr>
<tr>
<td>Itoi et al.</td>
<td>RS</td>
<td>13</td>
<td>100%</td>
<td>100%</td>
<td>0%</td>
<td>None</td>
</tr>
<tr>
<td>Vanadananjalu et al.</td>
<td>PS</td>
<td>10</td>
<td>100%</td>
<td>90%</td>
<td>0%</td>
<td>None</td>
</tr>
<tr>
<td>Vanadananjalu et al.</td>
<td>PS</td>
<td>10</td>
<td>100%</td>
<td>90%</td>
<td>0%</td>
<td>None</td>
</tr>
</tbody>
</table>

| Total | 55 studies | 1867 | 97% (83%-100%) | 90% (69%-100%) | 8% (0%-23%) | 17% (0%-52%) |

1 Complications include early and late, procedural and stent related; Only patients with walled-off pancreatic necrosis. RCT: Randomized controlled trial; PS: Prospective study; RS: Retrospective study; NR: Not reported.
Complications

- Infection
- Bleeding
 - Severe bleeding with erosion of splenic artery, GDA, or visceral pseudoaneurysm
- Perforation
- Stent migration into the cyst
- Surgery required in 5-11% of patients
Pancreatic Necrosis Therapy
Technique

• Initial drainage is similar to fluid collections
• Requires additional necrosectomies
 ▫ Median of 4 additional procedures
 ▫ Baskets, snares, nets, grasper
Clinical outcomes

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Design</th>
<th>Cases</th>
<th>Technical success</th>
<th>Clinical success</th>
<th>Recurrence</th>
<th>Complications¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seewald et al⁹⁹</td>
<td>RS</td>
<td>13</td>
<td>100%</td>
<td>85%</td>
<td>15%</td>
<td>30%</td>
</tr>
<tr>
<td>Chamley et al⁹¹</td>
<td>RS</td>
<td>13</td>
<td>100%</td>
<td>92%</td>
<td>0%</td>
<td>None</td>
</tr>
<tr>
<td>Voermans et al⁹²</td>
<td>RS</td>
<td>25</td>
<td>100%</td>
<td>93%</td>
<td>7%</td>
<td>40%</td>
</tr>
<tr>
<td>Hocke et al⁹⁷</td>
<td>RS</td>
<td>30</td>
<td>97%</td>
<td>83%</td>
<td>3%</td>
<td>23%</td>
</tr>
<tr>
<td>Schröver et al⁹⁴</td>
<td>RS</td>
<td>8</td>
<td>100%</td>
<td>75%</td>
<td>12%</td>
<td>25%</td>
</tr>
<tr>
<td>Mathew et al⁹⁸</td>
<td>RS</td>
<td>6</td>
<td>100%</td>
<td>100%</td>
<td>0%</td>
<td>None</td>
</tr>
<tr>
<td>Escourrou et al⁹⁴</td>
<td>RS</td>
<td>13</td>
<td>100%</td>
<td>100%</td>
<td>0%</td>
<td>46%</td>
</tr>
<tr>
<td>Jürgensen et al⁹⁷</td>
<td>RS</td>
<td>35</td>
<td>100%</td>
<td>97%</td>
<td>0%</td>
<td>17%</td>
</tr>
<tr>
<td>Bakker et al⁹⁸</td>
<td>RCT</td>
<td>10</td>
<td>100%</td>
<td>100%</td>
<td>20%</td>
<td>40%</td>
</tr>
<tr>
<td>Will et al⁹⁹</td>
<td>RS</td>
<td>18</td>
<td>100%</td>
<td>100%</td>
<td>11%</td>
<td>17%</td>
</tr>
<tr>
<td>Rische et al⁹¹</td>
<td>RS</td>
<td>22</td>
<td>100%</td>
<td>86%</td>
<td>14%</td>
<td>36%</td>
</tr>
<tr>
<td>Yamamoto et al⁹³</td>
<td>RS</td>
<td>4</td>
<td>100%</td>
<td>50%</td>
<td>NR</td>
<td>25%</td>
</tr>
<tr>
<td>Hritz et al⁹¹</td>
<td>RS</td>
<td>4</td>
<td>100%</td>
<td>100%</td>
<td>0%</td>
<td>None</td>
</tr>
<tr>
<td>Yasuda et al⁹⁰</td>
<td>RS</td>
<td>57</td>
<td>100%</td>
<td>75%</td>
<td>7%</td>
<td>33%</td>
</tr>
<tr>
<td>Ang et al⁹⁰</td>
<td>RS</td>
<td>8</td>
<td>100%</td>
<td>87%</td>
<td>13%</td>
<td>None</td>
</tr>
<tr>
<td>Sarkaria et al⁹⁴</td>
<td>RS</td>
<td>17</td>
<td>100%</td>
<td>88%</td>
<td>0%</td>
<td>6%</td>
</tr>
<tr>
<td>Total</td>
<td>16 studies</td>
<td>283</td>
<td>100% (97%-100%)</td>
<td>88% (50%-100%)</td>
<td>7% (0%-20%)</td>
<td>28% (0%-46%)</td>
</tr>
</tbody>
</table>

¹Complications include: early and late, procedural and stent related. RCT: Randomized controlled trial; PS: Prospective study; RS: Retrospective study; NR: Not reported.
EUS-guided Biliary Access
Indications

• Benign or malignant biliary obstruction
• Failed ERCP access (5%)
 ▫ Gastric/duodenal obstruction
 ▫ Anatomical variants (duodenal diverticulum)
 ▫ Surgically altered anatomy (BII, Whipple)
 ▫ Infiltrative ampullary/pancreatic cancer
Definitions

- Transpapillary/transanastomotic
 - Antegrade (EUS only)
 - Retrograde (EUS followed by ERCP)
- Transluminal
 - Antegrade (EUS only)
- Can gain access through either the intrahepatic or extrahepatic bile ducts
Technique: Retrograde
Technique: Retrograde
Technique: Retrograde
Clinical outcomes

- Technical success of 91%
- Treatment success of 88%
- EUS vs percutaneous drainage
 - Malignant distal biliary obstruction
 - Technical success rates higher in PTC
 - Clinical success rates similar
 - Lower AE and reintervention rates for EUS
Adverse Events

- Morbidity 29%
 - Intrahepatic > extrahepatic access
 - Antegrade > retrograde approach
 - Bile leak, penumoperitoneum, infection, pancreatitis, bleeding, stent migration
- Mortality 3%
Other Therapies

• Pancreatic duct access and drainage
• Drainage of non-pancreatic fluid collections
• Lumen apposing metal stent (LAMS)
 ▫ Gallbladder drainage
 ▫ Gastrojejunostomy
 ▫ EUS-guided transgastric ERCP access after ReY
Questions?
References