2.2 BIBLIOGRAPHY/SCHOLARSHIP

2.2.1 Publications in refereed professional journals

Note:

1) In the field of Pharmacology, when publishing papers the most important author positions are first and last. Second author is also recognized as an important contributor.
 a. First authorship, and to a lesser extent second authorship, designate the person that contributed to the experimental design, performed most of the experimental work and/or wrote the manuscript.
 b. Last authorship (also called “senior authorship”) usually indicates the person who had a major contribution to experimental design and analysis and manuscript writing/drafting, guided the entire project and obtained funding for the research. In my case, for papers on which I am senior author I have always contributed to laboratory work as well.
 c. Middle authorships indicate significant contributions (usually in the form of a discrete piece of laboratory work or analysis, contribution of new reagents or provision of grant funding).

2) For the publications listed, % effort is designated for writing (W), Experimental (E) Analysis (A) and funding (F).

3) For the publications listed, the ISI Web of Science was accessed on 09/30/2011. This database lists the number of times a paper has been cited by other refereed professional publications, updated monthly.
 a. The number of citations for each publication are listed thus “Times cited: X”.

4) For the publications listed, the Thompson ISI Science Journal Citation Reports 2010 edition was accessed on 09/30/2011. This database gives an “impact factor” for each journal that is related to the number of times each published paper is cited, on average; within 2 and 5 years of publication. It is one metric of the quality of a journal.
 a. As of 09/30/2011 journals with an impact factor over 2.87 are considered in the top 10% of all science and medicine journals, with those over 3.5 being in the top 5%.
 b. The impact factor of the journal is listed after each paper as “Journal impact Factor: X/Y”. Designating the 2-year and 5-year impact factors.

 Times Cited: 0,
 Journal Impact Factor: 2.985/3.060
 Effort: 50% W, 10% E, 25% A, 50% F

2. Development of UGT1A1 and UGT1A6 in the pediatric liver. *Drug Metabolism and Disposition*, 2011, 39(3): 912-9

 Times Cited: 1,
 Journal Impact Factor: 3.716/3.997
 Effort: 50% W, 25% E, 25% A, 100% F

 Times Cited: 0,
 Journal Impact Factor: 2.886/3.109
 Effort: 50% W, 10% E, 25% A, 50% F

 Times Cited: 0,
 Journal Impact Factor: 2.003/--- (new)
 Effort: 50% W, 33% E, 50% A, 50% F

 Times Cited: 0,
 Journal Impact Factor: 2.466/3.216
 Effort: 10% W, 10% E, 10% A, 10% F

 Times Cited: 1,
 Journal Impact Factor: 5.328/5.498
 Effort: 50% W, 33% E, 33% A, 0% F

Times cited: 1.

Journal Impact Factor: 2.260/2.419

Times cited: 5.

Journal Impact Factor: 2.886/3.109

Times cited: 8.

Journal Impact Factor: 3.204/3.903

Times cited: 1.

Journal Impact Factor: 1.878/2.222

11. Pediatric development of glucuronidation: the ontogeny of hepatic UGT1A4. *Drug Metabolism and Disposition* 2007 35(9): 1587-1592

Journal Impact Factor: 3.716/3.997

Journal Impact Factor: 1.640/2.478

Times cited: not listed.

Journal Impact Factor: not listed

Times cited: 2,

Journal Impact Factor: 3.993/4.258

effort: 50% W, 0% E, 25% A, 0% F

15. TCDD enhances the toxicity of Mitomycin C through Aryl-hydrocarbon receptor interaction under aerobic but not hypoxic conditions. *Life Sciences* 2006; 78(13):1499-1507

Times cited: 3,

Impact Factor: 2.451/2.661

effort: 80% W, 80% E, 100% A, 0% F

Times cited: 8,

Journal Impact Factor: 3.581/3.605

effort: 80% W, 75% E, 100% A, 0% F

17. Human placental glucuronidation and transport of 3'-azido-3'-deoxythymidine (AZT) and uridine diphosphate glucuronic acid (UDPGA) *Drug Metabolism and Disposition* 2004; 32(8):813-820.

Times cited: 13,

Journal Impact Factor: 3.716/3.997

effort: 75% W, 100% E, 100% A, 0% F

Times cited: 4,

Journal Impact Factor: 2.832/3.310

effort: 50%, 0% F

Times cited: 23,

Journal Impact Factor: 4.889/4.559

effort: 60% W, 100% E, 100% A, 0%

Times cited: 23.

Journal Impact Factor: 3.993/4.258

Effort: 75% W, 90% E, 100% A, 0% F

Times cited: 43.

Journal Impact Factor: 4.357/4.258

Effort: 75% W, 100% E, 100% A, 0% F

Times cited: 34.

Journal Impact Factor: 4.889/4.559

Effort: 75% W, 60% E, 60% A, 0% F

Times cited: 36.

Journal Impact Factor: 3.716/3.997

Effort: 50% W, 100% E, 100% A, 0% F

2.2.2 Publications under revision, submitted or pending submission

1. Upregulation of Ugt1a genes in placentas and fetal livers in a murine model of assisted reproduction. *under revision, Placenta.*

Effort: 50% W, 25% E, 75% A, 50% F

2. Neonatal Development of UGT1A9: Implications for Pediatric Pharmacokinetics. *Drug Metabolism and Disposition, submitted*

Effort: 25% W, 25% E, 25% A, 100% F

3. Differential expression and activity of UDP-glucuronosyltransferase 1A isoforms in the human placenta and the effects of pre-eclampsia.
4. The xenoestrogen 4-nonylphenol has chronic but not acute effects on sex steroid production and cell viability in the human placenta.

5. Effects of Obesity on Cytochrome P450 expression, activities and in vitro-in vivo scaling in human liver.

2.2.3 National Reports

1. **SHEDS-Multimedia version 4, Peer Consult on PBPK Modeling, and a SHEDS-PBPK Permethrin Study** Environmental Protection Agency Report One Potomac Yard, Washington DC, October 20, 2010

2.2.4 Invited International Conference Presentations

2.2.5 Abstracts Presented at Conferences (refereed)

5. Differential expression of UGT1A1 glucuronosyltransferase 1A in the human placenta: effects of gestational age and parturition Society for Developmental Biology, West Coast Regional Meeting, Honolulu HI April 14-16 2011

6. Placental endocrine disruption in female offspring and phenotypic anomalies. Society for Developmental Biology, West Coast Regional Meeting, Honolulu HI April 14-16 2011

8. Pro-Inflammatory Signaling by TNFα Differentially Affects Hepatic Nuclear Factor 1 and 4 in HepG2 Cells. The 60th Annual Conference of the American Medical Students Association, Anaheim CA, March 11-14, 2010

9. Can drinking water contaminants alter reproductive outcomes through adverse placental effects? Annual COBRE conference, Big Sky MT September 14-17, 2009

11. The ontogeny of UGT1A1 and UGT1A6 in pediatric liver. European Meeting of the International Society for the Study of Xenobiotics, Lisbon, Portugal, May 2009. Finalist, post-graduate (PhD) student award (Miyagi)

14. Proinflammatory cytokines TNFα and IL-1β affect Phase II metabolism in the HepG2 cell line. Australasian Society for Clinical and Experimental Pharmacology and Toxicology, Adelaide Australia, December 2007

17. Real Time RT-PCR time course studies provide evidence for a direct (non-transcriptional mediated) Mitomycin C-induced decrease in MCF-7 cellular RNA. American Association of Cancer Research Meeting, Anaheim CA, April 16-20, 2005 Poster 1371

22. 2,3,7,8 tetrachlorodibenzo-p-dioxin (TCDD) increases mitomycin C (MMC) toxicity and alters metabolising enzymes through aryl hydrocarbon receptor (AhR) interaction. *The Toxicologist* (2003) 72(suppl 1): 369

23. Differential Mitomycin C (MMC) toxicity and mitochondrial effects are observed when MCF-7 cells are co- or pre-treated under hypoxia or normoxia with 2,3,7,8 tetrachlorodibenzo-p-dioxin (TCDD). *Proc American Assoc Cancer Res* (2003) 44:1052

24. The MTT assay for cell survival may not be appropriate when used with redox active compounds or mitochondrial uncouplers such as dicumarol. *Proc American Assoc Cancer Res* 44: (2003) Late Breaking Abstract #150

2.2.6 Seminar Presentations to Departments at the Schools of Medicine and Pharmacy

1. “Developmental Pharmacology” Seminar to the Department of Tropical Medicine, JABSOM MEB 315 2-3 pm, October 24 2011.

3. “Saving the Babies” Seminar to the Department of Tropical Medicine, JABSOM MEB 315 12-1 pm, January 29th 2009.

6. “Pediatric Drug Metabolism” Seminar to the Department of Tropical Medicine, MEB 315, 12-1 pm March 17th 2007.

2.2.7 Research Funding History

Total costs are inclusive of overhead. Direct costs are those available to the laboratory.

2.2.7.1 Ongoing/Funded Research

<table>
<thead>
<tr>
<th>Date</th>
<th>Award</th>
<th>Role, % effort</th>
<th>Sponsor/PI</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>09/15/11 – 09/14/16</td>
<td>450,000 direct costs Grant total $15M</td>
<td>Biorepository Core Director 10%</td>
<td>NIH/NCRR/RCMI G12</td>
<td>Bioscience Research Infrastructure Development for Grant Enhancement and Success</td>
</tr>
<tr>
<td>08/01/11 – 07/31/12</td>
<td>10,000 total & direct</td>
<td>PI, 3%</td>
<td>The Chun Foundation</td>
<td>A novel scalar to improve Pediatric drug prediction</td>
</tr>
<tr>
<td>08/01/11 – 07/31/16</td>
<td>~110,000 direct</td>
<td>PhD Student Mentor, 5%</td>
<td>NIH/Fogarty Center D43</td>
<td>Training of Cameroonian Scientists in Research on Malaria</td>
</tr>
<tr>
<td>08/01/11 – 07/31/12</td>
<td>30,000 direct</td>
<td>Collaborator, 5%</td>
<td>NIH/NCRR/RMATRIX U54</td>
<td>Protection from cardiac hypertrophy via pharmacological inhibition of the ion channel TRPV1.</td>
</tr>
<tr>
<td>08/01/08 – 07/31/13</td>
<td>750,000 direct costs Grant total $11M</td>
<td>Project PI, 50%</td>
<td>NIH/NCRR/CORE P20</td>
<td>The Importance of UDP-Glucuronosyltransferase Enzymes in Pregnancy and Embryogenesis</td>
</tr>
</tbody>
</table>

2.2.7.2 Pending research grants

<table>
<thead>
<tr>
<th>Date</th>
<th>Requested</th>
<th>Role, % effort</th>
<th>Sponsor/PI</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Submitted 08/12/11 Predicted: 03/01/12 – 02/28/15</td>
<td>£90,000 ($140,000) total</td>
<td>PI 10%</td>
<td>Simeyp Consortium</td>
<td>Predicting UGT Pediatric Pharmacokinetics: Improving in vitro-in vivo Extrapolation (PUPPIE)</td>
</tr>
<tr>
<td>Submitted 10/05/11 Predicted: 07/01/12 – 06/3017</td>
<td>1,875,000 Total</td>
<td>PI, 25%</td>
<td>NIH/NIDDK/NIMHD R01</td>
<td>Gilbert’s, an Obesity-related Liver Disease in the Pacific (GOLD Pacific)</td>
</tr>
</tbody>
</table>
2.7.3 Completed Research Support

<table>
<thead>
<tr>
<th>Date</th>
<th>Award</th>
<th>Role, % effort</th>
<th>Sponsor/PI</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>09/01/10 – 08/31/11</td>
<td>9,000 direct costs</td>
<td>PI, 3%</td>
<td>The Chun Foundation</td>
<td>The effects of fatty liver on pediatric detoxification</td>
</tr>
<tr>
<td>10/01/08 – 09/30/09</td>
<td>15,000 direct costs</td>
<td>PI, 3%</td>
<td>The Chun Foundation</td>
<td>The development of alcohol detoxification and elimination in children</td>
</tr>
<tr>
<td>10/01/06 – 04/30/08</td>
<td>12,000 direct costs</td>
<td>PI, 10%</td>
<td>The Chun Foundation</td>
<td>UGT inhibition as a mechanism for endocrine disruption</td>
</tr>
<tr>
<td>10/01/07 – 09/30/08</td>
<td>39,000 direct costs</td>
<td>PI, 10%</td>
<td>The Hawaii Community Foundation</td>
<td>The development of detoxification defenses in children</td>
</tr>
<tr>
<td>09/01/06 – 08/31/07</td>
<td>25,000 direct costs</td>
<td>PI, 10%</td>
<td>The Alana Dung Foundation</td>
<td>Pediatric ontogeny of hepatic UDP-glucuronosyl transferase Enzymes</td>
</tr>
</tbody>
</table>

2.7.4 Research Grants applied for that were not funded

<table>
<thead>
<tr>
<th>Date</th>
<th>Requested</th>
<th>Role, % effort</th>
<th>Sponsor/PI</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Submitted 06/05/10</td>
<td>1,875,000</td>
<td>PI, 25%</td>
<td>NIH/NICHD R01</td>
<td>Methamphetamine in Pregnancy</td>
</tr>
<tr>
<td>Declined/Triaged</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2/10/09</td>
<td>1,875,000</td>
<td>Co-PI 25%</td>
<td>NIH/NICHD R01</td>
<td>Placental functions in ART</td>
</tr>
<tr>
<td>Declined/Triaged</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Submitted 09/15/08</td>
<td>375,000</td>
<td>PI, 10%</td>
<td>NIH/NICHD R21</td>
<td>Development of Pediatric detoxification enzymes.</td>
</tr>
<tr>
<td>Score 252 Resubmitted 09/15/09 Declined</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03/24/08 Declined</td>
<td>50,000</td>
<td>PI, 10%</td>
<td>Hawaii Community Foundation, Infrastructure Grant</td>
<td>A Human Organ and Tissue Bank for JABSOM</td>
</tr>
<tr>
<td>07/25/2008 Declined</td>
<td>375,000, total</td>
<td>PI, 10%</td>
<td>NIH/NCI R21</td>
<td>Universal Method to Quantify Chemical Exposure Using Dried Blood Spot Extraction</td>
</tr>
<tr>
<td>Date</td>
<td>Award</td>
<td>Sponsor</td>
<td>Title</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
<td>-----------------------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>09/22/07</td>
<td>1,980,000</td>
<td>NIH/Director’s Office</td>
<td>Accelerating drug development.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DP2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>01/24/07</td>
<td>100,000</td>
<td>Mary Kay Ash Foundation</td>
<td>Are drinking water contaminants endocrine disruptors.</td>
<td></td>
</tr>
<tr>
<td>Declined</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>08/24/06</td>
<td>1,200,000</td>
<td>CSREES/USDA</td>
<td>Endocrine disruptors in Oahu water and effects on human reproductive health.</td>
<td></td>
</tr>
</tbody>
</table>

2.7.5 Successful Travel Grants

<table>
<thead>
<tr>
<th>Date</th>
<th>Award</th>
<th>Sponsor</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>October 2009</td>
<td>$1850</td>
<td>ISSX Society</td>
<td>Travel to Portugal to present and Chair the session “Drugs in Special Populations”</td>
</tr>
<tr>
<td>December 2008</td>
<td>Registration Costs</td>
<td>RCMI</td>
<td>Presentation: Placental Steroid Metabolism is Altered by Assisted Reproduction Technologies</td>
</tr>
<tr>
<td>January 2007</td>
<td>$2000</td>
<td>U Hawaii (URC)</td>
<td>Travel to North Carolina to attend NIH/CDC workshop on pediatric blood spots</td>
</tr>
</tbody>
</table>